SKKT 57, SKKH 57, SKKT 57B

 V_{RSM}

 V_{RRM}, V_{DRM}

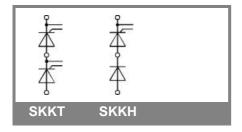
100	V	V	$I_{TAV} = 55 \text{ A (sin. 180; } I_c = 80 \text{ °C)}$			
	900	800	SKKT 57/08E	SKKT 57B08E	SKKH 57/08E	
	1300	1200	SKKT 57/12E	SKKT 57B12E	SKKH 57/12E	
	1500	1400	SKKT 57/14E	SKKT 57B14E	SKKH 57/14E	
	1700	1600	SKKT 57/16E	SKKT 57B16E	SKKH 57/16E	
	1900	1800	SKKT 57/18E	SKKT 57B18E	SKKH 57/18E	
	<u> </u>					

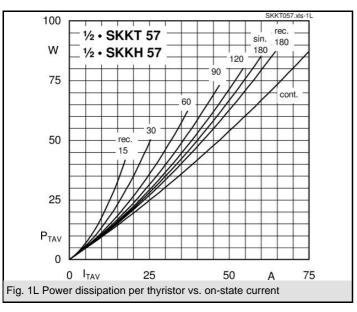
I_{TRMS} = 95 A (maximum value for continuous operation)

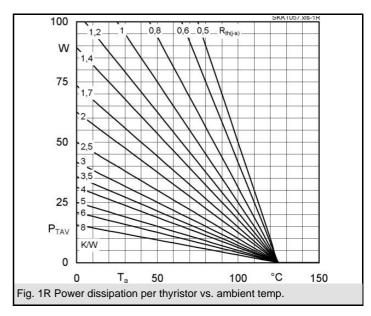
SEMIPACK® 1

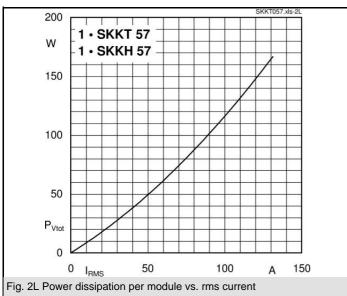
Thyristor / Diode Modules

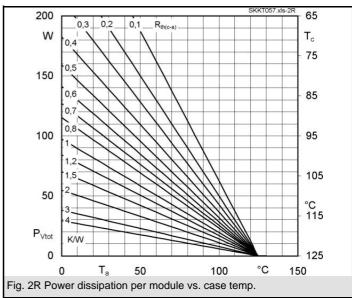
SKKT 57 SKKH 57 SKKT 57B

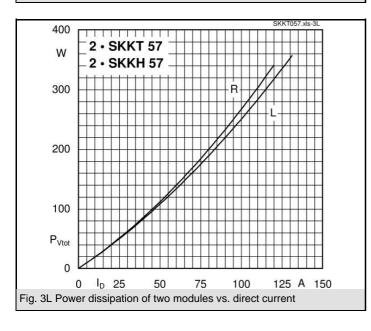

Features

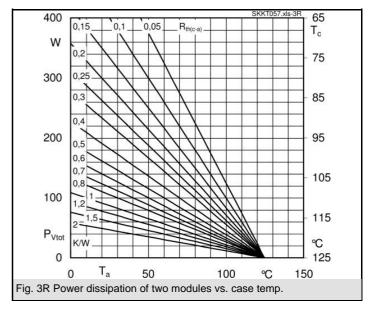

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered jounts for high reliability
- UL recognized, file no. E 63 532

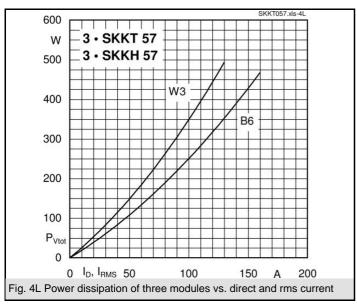

Typical Applications*

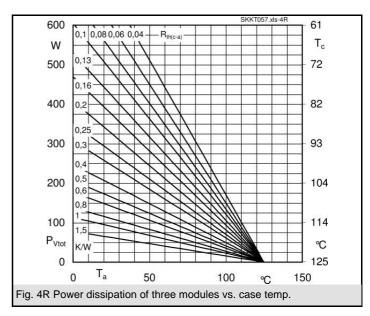

- DC motor control (e. g. for machine tools)
- · AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

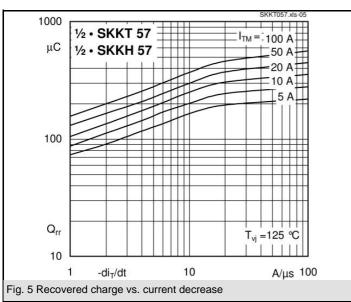

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	50 (35)	Α
I_D	P3/180; T _a = 45 °C; B2 / B6	57 / 68	Α
	P3/180F; T _a = 35 °C; B2 / B6	100 /130	Α
I _{RMS}	P3/180F; T _a = 35 °C; W1 / W3	130 / 3 x 100	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	1500	Α
	T _{vj} = 125 °C; 10 ms	1250	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	11000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	8000	A²s
V _T	T _{vi} = 25 °C; I _T = 200 A	max. 1,65	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 3,5	mΩ
I_{DD} ; I_{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 15	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t _q	$T_{vi}^{9} = 125 ^{\circ}\text{C}$,	80	μs
I _H	T_{vj}^2 = 25 °C; typ. / max.	150 / 250	mA
I_{L}	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ.} / \text{max.}$	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	T_{vj} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 6	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,57 / 0,29	K/W
R _{th(i-c)}	sin. 180; per thyristor / per module	0,6 / 0,3	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,64 / 0,32	K/W
R _{th(c-s)}	per thyristor / per module	0,2 / 0,1	K/W
T_{vj}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminals	3 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	95	g
Case	SKKT	A 46	
	SKKTB	A 48	
	SKKH	A 47	

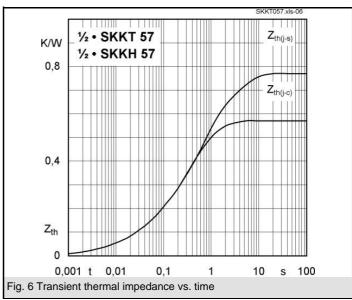


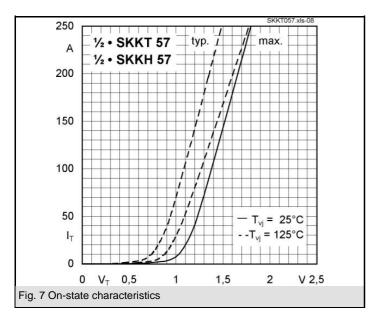


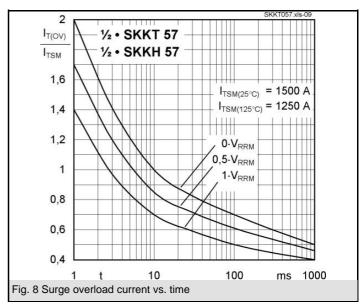


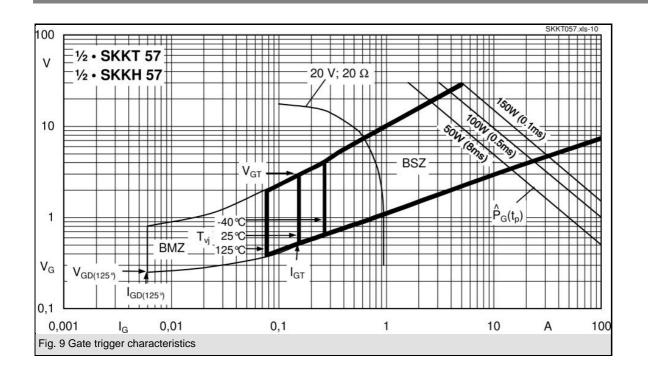


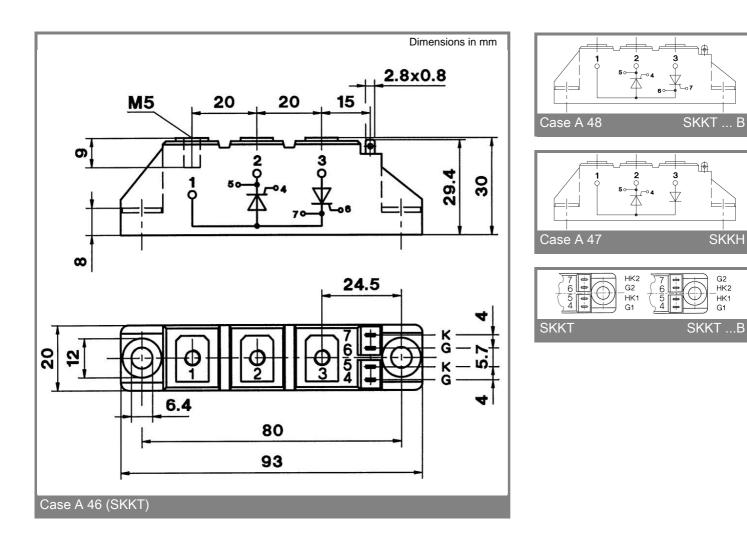





SKKT 57, SKKH 57, SKKT 57B







SKKH

G2 HK2

05-04-2011 GIL © by SEMIKRON

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.